If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x=9(2x)-1/3x
We move all terms to the left:
27x-(9(2x)-1/3x)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
27x-(+92x-1/3x)=0
We get rid of parentheses
27x-92x+1/3x=0
We multiply all the terms by the denominator
27x*3x-92x*3x+1=0
Wy multiply elements
81x^2-276x^2+1=0
We add all the numbers together, and all the variables
-195x^2+1=0
a = -195; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-195)·1
Δ = 780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{780}=\sqrt{4*195}=\sqrt{4}*\sqrt{195}=2\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{195}}{2*-195}=\frac{0-2\sqrt{195}}{-390} =-\frac{2\sqrt{195}}{-390} =-\frac{\sqrt{195}}{-195} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{195}}{2*-195}=\frac{0+2\sqrt{195}}{-390} =\frac{2\sqrt{195}}{-390} =\frac{\sqrt{195}}{-195} $
| 3/4+y=-3/16 | | (x*0.85)-5=(x*0.5) | | (x+3)(x-2)=150 | | x+21+4x=-41-4x-46 | | -3(-2a-4)+25=-3(5a+9)+1 | | 1/x+5=5/x+3 | | 2-1/3y=9 | | 17+15b=14b-14+11 | | 19+3w=w+3 | | 9c=19c-20 | | 4x=32;x | | x^-13=0 | | -3.52-18.1f=17.9f | | 2/5x+(3/20)x+250000=x | | 2/5x+(1/4)(2/5)x+250000=x | | -7f+20=-20-9f | | 14z-19+5=12z+18 | | -10-c=4c+10-7c | | -9+8m=9m | | 7s+7=9s-5 | | 8t-10=2t+10+8t | | -5m-5=-6m | | -2t+5=-9-4t | | -7s-4=-8s | | 9g+6=7g | | 24=-11u-8+3u=24 | | -9w-9=-10w | | 8x–(5x–5)=14 | | (-1/3)t=6 | | (3x-2)3=(x+1)20 | | X+3x+2x=128 | | (x+4/2)+(x+7/3)=1 |