If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-8x-17=0
a = 25; b = -8; c = -17;
Δ = b2-4ac
Δ = -82-4·25·(-17)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-42}{2*25}=\frac{-34}{50} =-17/25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+42}{2*25}=\frac{50}{50} =1 $
| w-w+2w-2w+3w=18 | | x-16x3=136 | | x/6=4,2 | | 4(x-25)=2x-10 | | 8-5/7x=-31 | | 1/2(24+2v)=5v-33 | | (5x+23)+37+(2x)=180 | | 4(x-25)=2x10 | | -4(r+2)=(2-2r) | | 35=-4.9t^2+50t | | -3s=5−2s | | 3x+19=10x-9 | | -p/7+16=21 | | 10(1.375)^19t=80 | | 12d-5d+d=8 | | 11c-9c+c+3c=12 | | 12q-9q=15 | | 15p-11p=12 | | 11k+5k-12k=16 | | 8x-16=5x-4 | | 4r-r=12 | | 25^(2x+3)=3125 | | 18j-10j=16 | | 150m-75m+48250=51250-175m | | g/10+-44=-40 | | 2x^2-34x-289=0 | | x+3x-16=136 | | -9q+18q+-12q+q=16 | | 9d-2d=7 | | 9(h-87)=45 | | k^2+5k=6=0 | | c+c-c=9 |