If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x*x+90000=100x*x
We move all terms to the left:
25x*x+90000-(100x*x)=0
We add all the numbers together, and all the variables
25x*x-(+100x*x)+90000=0
Wy multiply elements
25x^2-(+100x*x)+90000=0
We get rid of parentheses
25x^2-100x*x+90000=0
Wy multiply elements
25x^2-100x^2+90000=0
We add all the numbers together, and all the variables
-75x^2+90000=0
a = -75; b = 0; c = +90000;
Δ = b2-4ac
Δ = 02-4·(-75)·90000
Δ = 27000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27000000}=\sqrt{9000000*3}=\sqrt{9000000}*\sqrt{3}=3000\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-3000\sqrt{3}}{2*-75}=\frac{0-3000\sqrt{3}}{-150} =-\frac{3000\sqrt{3}}{-150} =-\frac{20\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+3000\sqrt{3}}{2*-75}=\frac{0+3000\sqrt{3}}{-150} =\frac{3000\sqrt{3}}{-150} =\frac{20\sqrt{3}}{-1} $
| 14.4z=8.64 | | -26=-4v+2(v-3) | | 9c^2+4c^2=2c^2 | | -6(4x+3)=6(-4x-13) | | 3.27x+4=6.43 | | 5(9x+27)=-45 | | -50+2x=22+6x | | 30+8x=2+5(5x-8) | | 2v+2=20 | | 5x+5+3x=-3 | | c/3+7=18 | | -4x+3=6x-2 | | -3(2x+18)=24 | | -2×+4=5-3x | | 8x-20=56+6x | | 1/2(6-y0=y | | 2.5y6=4.5y+1 | | 42x=50 | | 9x-3(x-4)=6(x+2) | | p+6/2=11 | | 13x+15=6.5 | | 20−26x+9x=−34x+60 | | y/16+9=11 | | 1/8q=-1/2 | | 1m=66m | | b=45/8b-34 | | 2/5(4x-5)=8 | | -3/5x-4/15x+1/3x=-64 | | 8t+4=4 | | 4x(4x-9)(7x+5)=0 | | -9x+15+12x=30 | | 0=1.4t^2-20t |