If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25w^2+32w=0
a = 25; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·25·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*25}=\frac{-64}{50} =-1+7/25 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*25}=\frac{0}{50} =0 $
| 5t+(2-t)=6 | | 7x-8=9x-40 | | 2(7+x)=21 | | 3x+-3=3(x-1) | | 4x+11=119 | | -42=7x-14 | | 1.1x=-4.4 | | 4/2=x/48 | | -2/8e-3/4e=-10 | | k-17=82 | | 38+x=44 | | -6+9x=-42 | | -5x-4=-5x+13 | | s−8=12 | | 5x-4=-5x+13 | | 0.3(3x-5)+0.7x=1.8x+11.5 | | A+2g=3g=4g | | -5-s=-12 | | 2d+4=5d-2 | | x5=140 | | -7+(4x+22)=8 | | 6x+24=3x-24 | | -4x-12+9x=-4x-19 | | 3(x)=78 | | 70=m=133 | | x2+x3=5x+26 | | 12x+7=8x+11 | | 6-7n+5n-31-2=23-12n | | -4n=-20.4 | | 6(x+4=3x-2 | | -5r+4-7r=-16 | | I2x-1I=7 |