25i/(3+4i)=3i

Simple and best practice solution for 25i/(3+4i)=3i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25i/(3+4i)=3i equation:



25i/(3+4i)=3i
We move all terms to the left:
25i/(3+4i)-(3i)=0
Domain of the equation: (3+4i)!=0
We move all terms containing i to the left, all other terms to the right
4i!=-3
i!=-3/4
i!=-3/4
i∈R
We add all the numbers together, and all the variables
25i/(4i+3)-3i=0
We add all the numbers together, and all the variables
-3i+25i/(4i+3)=0
We multiply all the terms by the denominator
-3i*(4i+3)+25i=0
We add all the numbers together, and all the variables
25i-3i*(4i+3)=0
We multiply parentheses
-12i^2+25i-9i=0
We add all the numbers together, and all the variables
-12i^2+16i=0
a = -12; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-12)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-12}=\frac{-32}{-24} =1+1/3 $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-12}=\frac{0}{-24} =0 $

See similar equations:

| 4y/15-7=5-3y/5 | | (25i/3+4i)=3i | | 2d=9.04 | | 2/3a-1=11 | | 29x=84 | | 4(10x-2=192 | | 12-(2x+5)=-2+x-3 | | 2^2x-5(2^x)=-4 | | 4(8x-2)=-75 | | 2x+2*2/2=5x+5*5/5 | | 2c+6=2(c+6) | | 12x+20x-8+3=8x+3-8 | | 3x=2÷7 | | 6x-8*4=12x/3+6 | | 3-(x+3)=12 | | 3x-1=2-2x-3+2x-4 | | 9y2-18y=0 | | 5x-21=3x-1 | | 4(x+1)=5(3x+1) | | Y=5t-3 | | 2a-16=3(a+1)+16a+1 | | -2v-5=-17 | | -43-4r=3(1-9) | | 0.9*y=0.72 | | -43-44r=3(1-9) | | 4n+2=-34 | | 12x+8=6x | | -9x-18=15x-72 | | 7.3x+(9.2-3)+(9.2x-3)+7.3=324 | | 7(4-3x)=7 | | -2(-5x+9)=52 | | 3^2x=1/729 |

Equations solver categories