If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-18y=0
a = 9; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·9·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*9}=\frac{0}{18} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*9}=\frac{36}{18} =2 $
| 5x-21=3x-1 | | 4(x+1)=5(3x+1) | | Y=5t-3 | | 2a-16=3(a+1)+16a+1 | | -2v-5=-17 | | -43-4r=3(1-9) | | 0.9*y=0.72 | | -43-44r=3(1-9) | | 4n+2=-34 | | 12x+8=6x | | -9x-18=15x-72 | | 7.3x+(9.2-3)+(9.2x-3)+7.3=324 | | 7(4-3x)=7 | | -2(-5x+9)=52 | | 3^2x=1/729 | | (2.5x-9)+x+x+1.5=99 | | -x.3=9 | | -3x-17=-23 | | -6x+15=-5x+18 | | 4x+10=3x+0 | | 3.5x+2x+3x+7=75 | | 4x-13=6x-5 | | 7x+17=x+77 | | -7x+4=-3x+12 | | (4x)+(5x+3)=102 | | t^2+25t-31.25=0 | | 42=6+2d | | z+5z¯=|z¯+7| | | 5y-31=14 | | ½x+5=3 | | (13x+10)+2x=80 | | 52x+2–20x52x=575 |