If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25/81x+15=x+20
We move all terms to the left:
25/81x+15-(x+20)=0
Domain of the equation: 81x!=0We get rid of parentheses
x!=0/81
x!=0
x∈R
25/81x-x-20+15=0
We multiply all the terms by the denominator
-x*81x-20*81x+15*81x+25=0
Wy multiply elements
-81x^2-1620x+1215x+25=0
We add all the numbers together, and all the variables
-81x^2-405x+25=0
a = -81; b = -405; c = +25;
Δ = b2-4ac
Δ = -4052-4·(-81)·25
Δ = 172125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172125}=\sqrt{2025*85}=\sqrt{2025}*\sqrt{85}=45\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-405)-45\sqrt{85}}{2*-81}=\frac{405-45\sqrt{85}}{-162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-405)+45\sqrt{85}}{2*-81}=\frac{405+45\sqrt{85}}{-162} $
| -493=-21+z | | -15=5+z | | -11y=0 | | 12.4=3w+8=0.05w | | (2n^2-18n)/2n=0 | | 4^x+8=72 | | X2-8y=121.6 | | T2(5c+2)-2c=3(2c+3)+7 | | 8=n(n-4) | | 1/27x=9x | | x=30+0.03x | | x/(1000+x)=0.03 | | (x/1000+x)=0.03 | | 5x/2=75 | | 1/12b=-3.31 | | 500=x/6 | | A+(-2)=(a+4)-(a+2) | | 5x-24=46 | | 2x+14=62 | | (-n-2)-(2n+5)=0 | | 3(x+4)=7+(x-3) | | 3(x+4)=7+(x-2) | | 3(x+4)=7+(x-1) | | 3(x+4)=7+(x-4) | | 3(x+4)=7+(x+4) | | 3(x+4)=7-(x+5) | | 3(x+4)=7-(x+3) | | 3(x+4)=7-(x+2) | | 3(x+4)=7-(x+1) | | x-(2x/5)=150 | | 3(x+4)=7-(x+4) | | x-(2(x/5))=150 |