If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25-(3x+5)=2x(x+8)+x
We move all terms to the left:
25-(3x+5)-(2x(x+8)+x)=0
We get rid of parentheses
-3x-(2x(x+8)+x)-5+25=0
We calculate terms in parentheses: -(2x(x+8)+x), so:We add all the numbers together, and all the variables
2x(x+8)+x
We add all the numbers together, and all the variables
x+2x(x+8)
We multiply parentheses
2x^2+x+16x
We add all the numbers together, and all the variables
2x^2+17x
Back to the equation:
-(2x^2+17x)
-3x-(2x^2+17x)+20=0
We get rid of parentheses
-2x^2-3x-17x+20=0
We add all the numbers together, and all the variables
-2x^2-20x+20=0
a = -2; b = -20; c = +20;
Δ = b2-4ac
Δ = -202-4·(-2)·20
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{35}}{2*-2}=\frac{20-4\sqrt{35}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{35}}{2*-2}=\frac{20+4\sqrt{35}}{-4} $
| -61=p/7-66 | | 4j−4=12 | | -4(3c-2)=-12-2c | | -7x-3x=-100 | | -12(-x+9)-(8x10)=2x-5x | | 3+10y=93 | | 2+4x-6x=-8 | | (2(2x+1)=5-2x) | | r/5+16=24 | | 73x+800=26x+1035 | | 5x+3=26+9x-4= | | |x+8||x+8|=13 | | 200+15x=260+12x | | 50q+43=−11q+70 | | 4+x/7=-7 | | w-5,129=2329 | | 2(x+-5)=9+-3x+6+8+3x+7 | | -5x+1+6x=9 | | 4x+1=8x−3 | | 2=y|7-1 | | 69=-8(1+7v)+5(v-5) | | y–6=19. | | y–6=19 | | 5x+4=5x−3 | | 7-2r=-8-3r | | d-2,983=1371 | | -3(y+7)=-33 | | 4x-2+6x=68 | | 5x-3(4x-9)+6.2=15.7 | | 5(u)=4|2u-4|-1 | | 4w-14=26 | | 1500+0.80x=1.59x |