If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24g^2+30g-9=0
a = 24; b = 30; c = -9;
Δ = b2-4ac
Δ = 302-4·24·(-9)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-42}{2*24}=\frac{-72}{48} =-1+1/2 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+42}{2*24}=\frac{12}{48} =1/4 $
| 2x-18=5x-39 | | 1.25=9x-11 | | 3b+5+2b=12+4b | | 2x^2-17=-30 | | 2(2+6a)=3a-9 | | -2+39x=37x+4 | | 7g2=63 | | 0=10x-15 | | 3x-10=x+130 | | 6=s+25/22 | | 28=532/q | | x20=160 | | 5z+3(3z−8)=12+18z | | 16x-(5x-4)=59 | | 16x(5x-4)=59 | | 4(x-10)^2=36 | | 28=4(x-3)+2x | | 4(x-10)2=36 | | 5+15g=2g+21 | | –5=x | | x-84=2x+39 | | 7=-4/5x+7 | | –5x=15 | | J(x)=-4/5x+7J(x)=7 | | 2(x-12)=4x-4 | | –15=–5x | | 7-10n=7 | | (1/27)^x=9^x | | 6x+2=19+6x | | 4(5x+7)-5(7x-7)=-7x-x | | 3½p-7=10½ | | 3j=9.96 |