J(x)=-4/5x+7J(x)=7

Simple and best practice solution for J(x)=-4/5x+7J(x)=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for J(x)=-4/5x+7J(x)=7 equation:



(J)=-4/5J+7(J)=7
We move all terms to the left:
(J)-(-4/5J+7(J))=0
Domain of the equation: 5J+7J)!=0
J∈R
We add all the numbers together, and all the variables
J-(+7J-4/5J)=0
We get rid of parentheses
J-7J+4/5J=0
We multiply all the terms by the denominator
J*5J-7J*5J+4=0
Wy multiply elements
5J^2-35J^2+4=0
We add all the numbers together, and all the variables
-30J^2+4=0
a = -30; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-30)·4
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*-30}=\frac{0-4\sqrt{30}}{-60} =-\frac{4\sqrt{30}}{-60} =-\frac{\sqrt{30}}{-15} $
$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*-30}=\frac{0+4\sqrt{30}}{-60} =\frac{4\sqrt{30}}{-60} =\frac{\sqrt{30}}{-15} $

See similar equations:

| 2(x-12)=4x-4 | | –15=–5x | | 7-10n=7 | | (1/27)^x=9^x | | 6x+2=19+6x | | 4(5x+7)-5(7x-7)=-7x-x | | 3½p-7=10½ | | 3j=9.96 | | 7/5=x/500 | | 3^x^2(1/27)^x=9^x-2 | | 7=5x+50 | | 8x+20=10x+26 | | 3-1/5(15x+40)=2x+25 | | 2b−50=16 | | 3(2x+1)+7(4x+2)=0 | | 8x+30=10x+26 | | 4x^2+35+24=0 | | 5+3r=7r-15 | | 63/s=9 | | -0.0241x^2+x+5.5=0 | | 11+6x=2x–13 | | 418=−16t^2+202t+8 | | f2+8=12 | | 418=−16t2+202t+8 | | f2+ 8=12 | | .05m+9=16 | | 4b+1=19+3b | | 6*(3-x)=54 | | 12=4+d/7 | | 4q+2q+5q-2q=9 | | 16x=28+9x | | c/8-4=5 |

Equations solver categories