If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24b^2+96b=0
a = 24; b = 96; c = 0;
Δ = b2-4ac
Δ = 962-4·24·0
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-96}{2*24}=\frac{-192}{48} =-4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+96}{2*24}=\frac{0}{48} =0 $
| -15x-17=-197 | | 8x+15=175 | | 2x+10=-5x-67 | | 2x=10=-5x-67 | | -5+3x=2x+4+-15 | | (3b+4)/5=-4 | | 2(u-2)+7u=-22 | | (6m+7)(9m+7)=0 | | 8+9(+n)n=5 | | (6x+9)−(7x+1)=0 | | 3x-x+4=2x-x+9 | | y^2-8y-16+4=0 | | (x+4)/5=3/(x+2) | | 0.9=4x+1/x+1 | | d-84.9=37.5 | | 114-2x-3(2)=x | | 4x-2=1.5x+5 | | -6=4(w-4)-6w | | 7.4x-5=83.8 | | 2.5x=5/4 | | 1.5+1.5+x+x=114 | | 1/8x+1/56x=7 | | 5(2y-1)+3=3(3y+2) | | 3.5(x+3)=35 | | 20+5x=5(4+x) | | 7x-4x+1/2x=19 | | 8x/5=2.4 | | 4.7x+18=102.6 | | 3^(x)=7 | | 512/2=x-20 | | 11x^2+5x=-34 | | 8x=21/5 |