2475=w(2w+10)

Simple and best practice solution for 2475=w(2w+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2475=w(2w+10) equation:



2475=w(2w+10)
We move all terms to the left:
2475-(w(2w+10))=0
We calculate terms in parentheses: -(w(2w+10)), so:
w(2w+10)
We multiply parentheses
2w^2+10w
Back to the equation:
-(2w^2+10w)
We get rid of parentheses
-2w^2-10w+2475=0
a = -2; b = -10; c = +2475;
Δ = b2-4ac
Δ = -102-4·(-2)·2475
Δ = 19900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19900}=\sqrt{100*199}=\sqrt{100}*\sqrt{199}=10\sqrt{199}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{199}}{2*-2}=\frac{10-10\sqrt{199}}{-4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{199}}{2*-2}=\frac{10+10\sqrt{199}}{-4} $

See similar equations:

| y-8.2=7.45 | | 128+(2x+14)=180 | | 5x+20+7x-80=180 | | u+4.52=7.64 | | 27x-18=6x | | y-5.3=8.8 | | 1.25=0.7+r | | X2+3x2=x-4x+25 | | q−5=−5q | | -4(-3x-6)=-3(-2x-8) | | q−5=−5q= | | z-10=5z=-z=5=2z | |  3x−2.4=9.6 | | .25p=82.50 | | 7/3=m/9+2/3 | | 2/3x+3/4=5/2 | | X²+3x²=x-4x+25 | | 5.3-2.8x-7.1=3.9 | | 20x-180=-10x+720 | | 17x-35=10x-63 | | 36-x=262 | | 11-3n=75-1n | | 16-5x=84 | | ?x14=84 | | 220=8(11)w | | 11−g=5 | | 3/2z=18 | | -9.2(x-4.75)=36.8 | | 8x=(-24) | | 52-y=193 | | 29-10x=-18+91 | | Y=5x-10(3,5) |

Equations solver categories