24+(4x2)=180

Simple and best practice solution for 24+(4x2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24+(4x2)=180 equation:



24+(4x^2)=180
We move all terms to the left:
24+(4x^2)-(180)=0
We add all the numbers together, and all the variables
4x^2-156=0
a = 4; b = 0; c = -156;
Δ = b2-4ac
Δ = 02-4·4·(-156)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{39}}{2*4}=\frac{0-8\sqrt{39}}{8} =-\frac{8\sqrt{39}}{8} =-\sqrt{39} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{39}}{2*4}=\frac{0+8\sqrt{39}}{8} =\frac{8\sqrt{39}}{8} =\sqrt{39} $

See similar equations:

| -8-x=-3(2x-4)+3 | | (4x+11)=(2x+1)=(7x-14) | | 3.4x+1.8x=-20.8 | | 2=9x+2-5x | | X=4,3x-711 | | 6x=2x-1 | | v/2=-19 | | 7x+11=40+3x-1 | | 32.50=4x-2 | | z/30=9 | | y+5+-4y=-10 | | 120+(5x)=180 | | -16.1n=-16.2-17.6n | | 5+a/4=10 | | 1/4x+1=32 | | 4+8x=28x-28-4 | | 16f-16-15f=17-2f | | 10y-7=9-4y | | -31s=-651 | | 132=9x+5+21x+7 | | 4(w-2)-8w=-16 | | –31s=–651 | | 3(2+s)=10 | | 1=(4x-18) | | 1/3+1/4=1/2x | | 11g=15g-20 | | n+(-8)=8* | | u+470=576 | | 2(x+3)=(2x+1) | | 4(1y+8)=16 | | {1}{2}12k+7=3k+6 | | 135+(x-4)=180 |

Equations solver categories