If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24(18+x)-24(18-x)=(18-x)(18+x)
We move all terms to the left:
24(18+x)-24(18-x)-((18-x)(18+x))=0
We add all the numbers together, and all the variables
24(x+18)-24(-1x+18)-((-1x+18)(x+18))=0
We multiply parentheses
24x+24x-((-1x+18)(x+18))+432-432=0
We multiply parentheses ..
-((-1x^2-18x+18x+324))+24x+24x+432-432=0
We calculate terms in parentheses: -((-1x^2-18x+18x+324)), so:We add all the numbers together, and all the variables
(-1x^2-18x+18x+324)
We get rid of parentheses
-1x^2-18x+18x+324
We add all the numbers together, and all the variables
-1x^2+324
Back to the equation:
-(-1x^2+324)
-(-1x^2+324)+48x=0
We get rid of parentheses
1x^2+48x-324=0
We add all the numbers together, and all the variables
x^2+48x-324=0
a = 1; b = 48; c = -324;
Δ = b2-4ac
Δ = 482-4·1·(-324)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-60}{2*1}=\frac{-108}{2} =-54 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+60}{2*1}=\frac{12}{2} =6 $
| 9x+x-9x=3 | | 7x+60=5(30-x) | | f=4(2)^2-12(2) | | (9+2x)(4)=5x+12 | | 6x-1/3=4x-3/4 | | 14y+4y+y+2y-11y=20 | | 6b+17=-b+4 | | 5x-4x=18 | | 3x+3=6x-1 | | 20s-14s=18 | | x4+-12x+27=0 | | 8m-7m=9 | | 9x+2(4)=5x+2 | | 1/2y-9=1/8y | | (2x+5)/4=5x-2 | | -4(m-1)=12+3(m-2) | | 1/2x-7=13+3x | | (2x+10)/4=5x-2 | | 3(-2x+4)-16=6 | | 2w2+13w+11=0 | | 3z/7+9=7 | | 30+15+0.65x=35+0.75 | | -(4+x)-3(1+2x)=-4x-2x | | x/7+6=-7 | | (9x+2x)5=-33+2x | | 26=5x-44 | | 2x^2+3x-5=22 | | (9x+2x)5=-33+12x | | (-32)=8/7(3w-1) | | 3m-10=2(4m/5) | | -4a+5(1+a)=33-6a | | -53/8x=-43/8x |