23x+1=7/15x+3

Simple and best practice solution for 23x+1=7/15x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23x+1=7/15x+3 equation:



23x+1=7/15x+3
We move all terms to the left:
23x+1-(7/15x+3)=0
Domain of the equation: 15x+3)!=0
x∈R
We get rid of parentheses
23x-7/15x-3+1=0
We multiply all the terms by the denominator
23x*15x-3*15x+1*15x-7=0
Wy multiply elements
345x^2-45x+15x-7=0
We add all the numbers together, and all the variables
345x^2-30x-7=0
a = 345; b = -30; c = -7;
Δ = b2-4ac
Δ = -302-4·345·(-7)
Δ = 10560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10560}=\sqrt{64*165}=\sqrt{64}*\sqrt{165}=8\sqrt{165}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-8\sqrt{165}}{2*345}=\frac{30-8\sqrt{165}}{690} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+8\sqrt{165}}{2*345}=\frac{30+8\sqrt{165}}{690} $

See similar equations:

| 2/3x+1=7/16x+3 | | 23x+1=7/16x+3 | | X2+1x-112×2+1x=112 | | 7g+10-4-5g=g+30-3g | | 18-3f=3f | | 12=12-x | | (x-2)2+(x+2)(x-1)-2=3(x+4)(x-3)-x(x-3) | | 4=4u-2u | | -1=5+x/3 | | 7n+5=19n=1 | | 4p-3=13p=1 | | a^2-8a+81=0 | | a^2-18a+16=0 | | 4x(5^2x)=10 | | 9m-1+6m=29 | | 4(3^2x+1)+17(3^x)=7 | | 2x-17=-63 | | 3(t+7)=21 | | y-1.7=4.3 | | v+1.35=5.66 | | 104=(1)/(2)h(10+3) | | 67x=89 | | 5z-3=4z+2 | | 168/x=2x-10 | | 4(x^2+70x-50)=0 | | -5x+2=x+10 | | 5y-126=-13y | | 5m+3=7m-1 | | 9y+3(3)=y | | 7p=4p+18 | | q/21=3 | | 2t/11=4 |

Equations solver categories