If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-2)2+(x+2)(x-1)-2=3(x+4)(x-3)-x(x-3)
We move all terms to the left:
(x-2)2+(x+2)(x-1)-2-(3(x+4)(x-3)-x(x-3))=0
We multiply parentheses
2x+(x+2)(x-1)-(3(x+4)(x-3)-x(x-3))-4-2=0
We multiply parentheses ..
(+x^2-1x+2x-2)+2x-(3(x+4)(x-3)-x(x-3))-4-2=0
We calculate terms in parentheses: -(3(x+4)(x-3)-x(x-3)), so:We add all the numbers together, and all the variables
3(x+4)(x-3)-x(x-3)
We multiply parentheses
-x^2+3(x+4)(x-3)+3x
We multiply parentheses ..
-x^2+3(+x^2-3x+4x-12)+3x
We add all the numbers together, and all the variables
-1x^2+3(+x^2-3x+4x-12)+3x
We multiply parentheses
-1x^2+3x^2-9x+12x+3x-36
We add all the numbers together, and all the variables
2x^2+6x-36
Back to the equation:
-(2x^2+6x-36)
(+x^2-1x+2x-2)+2x-(2x^2+6x-36)-6=0
We get rid of parentheses
x^2-2x^2-1x+2x+2x-6x-2+36-6=0
We add all the numbers together, and all the variables
-1x^2-3x+28=0
a = -1; b = -3; c = +28;
Δ = b2-4ac
Δ = -32-4·(-1)·28
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-11}{2*-1}=\frac{-8}{-2} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+11}{2*-1}=\frac{14}{-2} =-7 $
| 4=4u-2u | | -1=5+x/3 | | 7n+5=19n=1 | | 4p-3=13p=1 | | a^2-8a+81=0 | | a^2-18a+16=0 | | 4x(5^2x)=10 | | 9m-1+6m=29 | | 4(3^2x+1)+17(3^x)=7 | | 2x-17=-63 | | 3(t+7)=21 | | y-1.7=4.3 | | v+1.35=5.66 | | 104=(1)/(2)h(10+3) | | 67x=89 | | 5z-3=4z+2 | | 168/x=2x-10 | | 4(x^2+70x-50)=0 | | -5x+2=x+10 | | 5y-126=-13y | | 5m+3=7m-1 | | 9y+3(3)=y | | 7p=4p+18 | | q/21=3 | | 2t/11=4 | | 72/y=3 | | -8x-3=-2x+4 | | 2x-20=12+6x | | 8-2+1x5-3=2 | | 20553=x+0.105x | | 25x/15=13 | | n+4n+5n=14 |