If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21m^2+19m=0
a = 21; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·21·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*21}=\frac{-38}{42} =-19/21 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*21}=\frac{0}{42} =0 $
| 16=8^2x | | 9(8x+5)-1=116 | | 5(4x)-1/2=234 | | 2(t+17)=0 | | 62°=z | | 29+ g = 8 | | -85-4x=5x+113 | | 12/p=-4 | | 1n/3+1n/4=7 | | (5n+9)*3=11+(-n) | | -32-24u=34-2u | | -21=(x-5) | | -2(8m+)=-16 | | -5=7m-20=20-2m | | 135+7x=65-3x | | 10=3(c−5)−-1 | | -70+17r=r^2 | | 3c-7=39 | | 4x^2-55=45 | | 3x+1/2=17 | | 2/z=-2 | | 2(10x-52)=x+29 | | 2(x+29)=10x-52 | | -3(5x+12)=-39 | | u+2/2=3 | | 2(2x-9=38 | | 4r+3r-r= | | x/7=28/63 | | -q+4=-9 | | -3(6c+7)=-15 | | 17-17a=6a+6(5a+8) | | r+1=-8 |