20y(y+2)=4(4y+5)

Simple and best practice solution for 20y(y+2)=4(4y+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20y(y+2)=4(4y+5) equation:



20y(y+2)=4(4y+5)
We move all terms to the left:
20y(y+2)-(4(4y+5))=0
We multiply parentheses
20y^2+40y-(4(4y+5))=0
We calculate terms in parentheses: -(4(4y+5)), so:
4(4y+5)
We multiply parentheses
16y+20
Back to the equation:
-(16y+20)
We get rid of parentheses
20y^2+40y-16y-20=0
We add all the numbers together, and all the variables
20y^2+24y-20=0
a = 20; b = 24; c = -20;
Δ = b2-4ac
Δ = 242-4·20·(-20)
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{34}}{2*20}=\frac{-24-8\sqrt{34}}{40} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{34}}{2*20}=\frac{-24+8\sqrt{34}}{40} $

See similar equations:

| -5x+2+6x=-1-7 | | 15m+4-9m=11 | | X²+2x-80=0 | | 59049=1*3^(n-1) | | 4=-x+9 | | 6x=12+2 | | 8x-(3x+25)=10 | | 69=196x | | 5(4z+1)-9=136 | | 11.4-0.5x=9.9+0.6x | | 8n+n=90 | | 0.11-0.02(x+3)=-0.01(1-x) | | 22=-2(4n+3) | | 3x+47+10=27+x+x-26 | | x+11.2=25.1 | | 0.06^x=1850 | | 5(t–1)–3(t+2)=1 | | V/5+7/20=v/4 | | n3+4=-19 | | 2/3y-(2/5)=5 | | -4x+9=-5x-9 | | 3.2x^2-1.344x+0.1=0 | | 9x/8-2=11x/10 | | 3x/5-x=x/20-9/4 | | -3(x-20)=87 | | -4x-4(3x+2)=136 | | C(x)=4x^2-384x+46 | | 11x-7×=-2 | | 19-4x=-37 | | 7=x-6+1 | | 0.1r−1=0.65 | | (3/4)/1/2=5/6/x |

Equations solver categories