If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x=35x^2
We move all terms to the left:
20x-(35x^2)=0
determiningTheFunctionDomain -35x^2+20x=0
a = -35; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-35)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-35}=\frac{-40}{-70} =4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-35}=\frac{0}{-70} =0 $
| 5–3z=–8z | | 5½+p=6 | | 3x+15x=90 | | 0.6-0.7x=0.5 | | x=-x^2-5x+10 | | 2n+1=n12 | | 0=-7(c-89) | | 3x-5=x+7= | | 156-2x=3x+646-x | | 13-9z=58 | | 7(x–9)=3(x–2) | | 10x-4(2x-3)=6(x-1) | | 3x^-2-10=4x | | 4a+1-a=-1 | | x^-5x+3=0 | | 0.10=10/x | | -8(2x-9)=40x | | 4a+1–a=-1 | | −2y+5=2(3y−1) | | -4(s-88)=24 | | 5+x^2=3 | | -5(x+5=5(x+5) | | 3z+-16=-46 | | 5x^2+14=7 | | 3x(5x-2)-4(5x-2)=0 | | 10x−9=−2x−69 | | 7(n-4=-(4+5n)+8n | | 2y(3y+1)+6(3y+1)=0 | | 4p=-42 | | 8+3(y-1)=5+3y | | 2r-83=35 | | 180=15x+75+6 |