If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20n^2-60n+1=0
a = 20; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·20·1
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-8\sqrt{55}}{2*20}=\frac{60-8\sqrt{55}}{40} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+8\sqrt{55}}{2*20}=\frac{60+8\sqrt{55}}{40} $
| -6=1.2n | | 2p(4p-5)/3=4 | | y/3y=-18 | | 2/3ss=24 | | 30+2x= | | 12n-8n=56 | | 4(-2x+3)-3x=20-7x+8 | | S-1.5x=6.3 | | 0.08(24-x)+0.4x=4 | | 126÷6=n | | 6y^2+27-459=0 | | 7=25-x | | 12/n=36/15 | | 6s^2+5s-50=0 | | -2w^2-6w+80=0 | | -z=-7/8 | | A(x-3)+5(-x+3)=0 | | (x/4)+5=11 | | -2k^2+7k-5=0 | | X+2=13x=11 | | X+2=13.x=11 | | 2/5x-4=1/3x+1 | | 1x-2=85-x | | 5x+30=6x+20 | | 5=45/n | | 20/f=2 | | 5=30/j | | 5.6=m-6.6 | | 21=u-5 | | 3+15=2x+25 | | C=23h+78 | | x^2+25=64 |