2/5x-4=1/3x+1

Simple and best practice solution for 2/5x-4=1/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x-4=1/3x+1 equation:



2/5x-4=1/3x+1
We move all terms to the left:
2/5x-4-(1/3x+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
2/5x-1/3x-1-4=0
We calculate fractions
6x/15x^2+(-5x)/15x^2-1-4=0
We add all the numbers together, and all the variables
6x/15x^2+(-5x)/15x^2-5=0
We multiply all the terms by the denominator
6x+(-5x)-5*15x^2=0
Wy multiply elements
-75x^2+6x+(-5x)=0
We get rid of parentheses
-75x^2+6x-5x=0
We add all the numbers together, and all the variables
-75x^2+x=0
a = -75; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-75)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-75}=\frac{-2}{-150} =1/75 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-75}=\frac{0}{-150} =0 $

See similar equations:

| 1x-2=85-x | | 5x+30=6x+20 | | 5=45/n | | 20/f=2 | | 5=30/j | | 5.6=m-6.6 | | 21=u-5 | | 3+15=2x+25 | | C=23h+78 | | x^2+25=64 | | 2p-36=62 | | 4(x+2)=6x–8 | | -(a−3)+2a=−2. | | 8c−7(c−3)+4=−16. | | 8c−7(c−3)+4=−16 | | 17−20−9k=–13−10k | | -7k-5k=6/5 | | 3=5x+50 | | (3)=5x+50 | | -2y-8y=5/2 | | 2x+22=148 | | 8^x-1=2^2x+8 | | -16t^2+84t+20=0 | | -16t^2+84t=0 | | 16c2−28c+9=-4c−4c | | 7w-12=-26 | | 3|3-3n|=-45 | | x=−2(x+2)3(x−2)4(x−3)2=0 | | f-4ff=9 | | -3(-7x+9)-2x=3(x-2)-3 | | x+52=x+24 | | -5-7-8w-4ww=8 |

Equations solver categories