20g(-8g-15)=3(4g-5)

Simple and best practice solution for 20g(-8g-15)=3(4g-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20g(-8g-15)=3(4g-5) equation:



20g(-8g-15)=3(4g-5)
We move all terms to the left:
20g(-8g-15)-(3(4g-5))=0
We multiply parentheses
-160g^2-300g-(3(4g-5))=0
We calculate terms in parentheses: -(3(4g-5)), so:
3(4g-5)
We multiply parentheses
12g-15
Back to the equation:
-(12g-15)
We get rid of parentheses
-160g^2-300g-12g+15=0
We add all the numbers together, and all the variables
-160g^2-312g+15=0
a = -160; b = -312; c = +15;
Δ = b2-4ac
Δ = -3122-4·(-160)·15
Δ = 106944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{106944}=\sqrt{64*1671}=\sqrt{64}*\sqrt{1671}=8\sqrt{1671}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-312)-8\sqrt{1671}}{2*-160}=\frac{312-8\sqrt{1671}}{-320} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-312)+8\sqrt{1671}}{2*-160}=\frac{312+8\sqrt{1671}}{-320} $

See similar equations:

| 1-16x^-2=0 | | 0.4y=4.5 | | x(x+1)=30600 | | 9y-3=6y+21 | | 2y=3(-2-4/3y)+6 | | 2/x+4-4/x-3=-4/x^2+x-12 | | 5x-8x=32-17 | | −30=2x | | -5/36+r=-1/11 | | x+2/3=-7/6 | | 18-1n=23 | | -18=6-3p | | z+1/6=39/15 | | 9n-4+3(n-11)=23 | | 3x+8+6x+82=180 | | 2x–4=5x+8 | | 6x+15-5x=-8+(-13) | | 2(x2+1)-5x=0 | | -2v-2+5v=3v+3-2 | | 5x+3=8×+15 | | 12/1=6/x | | (1/4)y+1=64 | | 5u+4=3u-4 | | 5×+8+74-8x-6=180 | | 3(x-2)=5-2x | | 50/3(x)=300 | | Ex-1=20 | | 3x^2-40=7x | | 50/3x=300 | | 1-2(1+3x-2(x+2)+3x=-1 | | -5=a/7 | | x/4.65-4.798=-3.6 |

Equations solver categories