20c+18/9c+3c=75

Simple and best practice solution for 20c+18/9c+3c=75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20c+18/9c+3c=75 equation:



20c+18/9c+3c=75
We move all terms to the left:
20c+18/9c+3c-(75)=0
Domain of the equation: 9c!=0
c!=0/9
c!=0
c∈R
We add all the numbers together, and all the variables
23c+18/9c-75=0
We multiply all the terms by the denominator
23c*9c-75*9c+18=0
Wy multiply elements
207c^2-675c+18=0
a = 207; b = -675; c = +18;
Δ = b2-4ac
Δ = -6752-4·207·18
Δ = 440721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{440721}=\sqrt{81*5441}=\sqrt{81}*\sqrt{5441}=9\sqrt{5441}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-675)-9\sqrt{5441}}{2*207}=\frac{675-9\sqrt{5441}}{414} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-675)+9\sqrt{5441}}{2*207}=\frac{675+9\sqrt{5441}}{414} $

See similar equations:

| 9=3(2x+3)+3 | | -15n16=86-29n | | 18z+3+70+127=180 | | y+20+3y=180 | | 9h+h-h+3h-6=6 | | 5(y-3)-9=-3(-5y+4)-2y | | -0.25r=-4 | | −8x+2(3x+5)=8−6x+2+4x | | 2y+3,5y-0,5y=15 | | –6+4x=x–6. | | 8-3(6r+8)=7r+34 | | -15+16=86+-29n | | A=(20-2x)16+10x | | (-8v)+5=85 | | 5n+34=-2(1-7n”) | | x/4-4=2.5 | | (10-v)/4=2(v+17) | | 8.95+5p=23.65 | | 7(w+4)=-8w+32 | | y+11=2y+98 | | 17=-4-x | | 2=x/22 | | 7y-4=3+8y | | y+96+28+113=180 | | 1/3(9x=3 | | (x+8)+10=16 | | 11/3=v/5 | | 7/5x-5/7x-6=10 | | 16=8(4+x) | | -3/5+q=10 | | -6y+5=-30 | | x8=-14 |

Equations solver categories