If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2024=h2
We move all terms to the left:
2024-(h2)=0
We add all the numbers together, and all the variables
-1h^2+2024=0
a = -1; b = 0; c = +2024;
Δ = b2-4ac
Δ = 02-4·(-1)·2024
Δ = 8096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8096}=\sqrt{16*506}=\sqrt{16}*\sqrt{506}=4\sqrt{506}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{506}}{2*-1}=\frac{0-4\sqrt{506}}{-2} =-\frac{4\sqrt{506}}{-2} =-\frac{2\sqrt{506}}{-1} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{506}}{2*-1}=\frac{0+4\sqrt{506}}{-2} =\frac{4\sqrt{506}}{-2} =\frac{2\sqrt{506}}{-1} $
| 2x+10+80=90 | | g-56/8=5 | | 3/4x+4/10=36/15 | | 6(j+5)=72 | | 3(4+5x)=46.5 | | 0.8b=1.12 | | x²+7x=21 | | n/3+11=15 | | 14x^2-85x+44=0 | | 0.6−-2r=6.28 | | 2x+10+80=99 | | 11/6z=1/3 | | 3/g-7=15 | | 1.6=-2d | | 6n^2-41n+44=0 | | 0.14(y-9)+0.10y=0.18y-1.8 | | -3=p-6 | | 1.6=2d | | (-1+9i)(i)+(3+3i)=(9-6i) | | 2(2g+7-8+4g+5)=28 | | 2w^2-5w-25=0 | | 33-x^2=30 | | x+6=2x-54=x=60 | | c(4+7)=88 | | 2i-3=12 | | 6+11m=-5 | | 6.8(x-2)=0.2+35.4 | | 1=8x2+7x-1 | | 5x–3=17 | | x+6=2x-54+x=60 | | 3(2x-1)-2(2x-1)=9 | | -3(p-75)=3 |