If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-1+9i)(i)+(3+3i)=(9-6i)
We move all terms to the left:
(-1+9i)(i)+(3+3i)-((9-6i))=0
We add all the numbers together, and all the variables
(9i-1)i+(3i+3)-((-6i+9))=0
We multiply parentheses
9i^2-1i+(3i+3)-((-6i+9))=0
We get rid of parentheses
9i^2-1i+3i-((-6i+9))+3=0
We calculate terms in parentheses: -((-6i+9)), so:We add all the numbers together, and all the variables
(-6i+9)
We get rid of parentheses
-6i+9
Back to the equation:
-(-6i+9)
9i^2+2i-(-6i+9)+3=0
We get rid of parentheses
9i^2+2i+6i-9+3=0
We add all the numbers together, and all the variables
9i^2+8i-6=0
a = 9; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·9·(-6)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{70}}{2*9}=\frac{-8-2\sqrt{70}}{18} $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{70}}{2*9}=\frac{-8+2\sqrt{70}}{18} $
| 2(2g+7-8+4g+5)=28 | | 2w^2-5w-25=0 | | 33-x^2=30 | | x+6=2x-54=x=60 | | c(4+7)=88 | | 2i-3=12 | | 6+11m=-5 | | 6.8(x-2)=0.2+35.4 | | 1=8x2+7x-1 | | 5x–3=17 | | x+6=2x-54+x=60 | | 3(2x-1)-2(2x-1)=9 | | -3(p-75)=3 | | -18=5h+3h | | -3(p−75)=3 | | x(8.25)=36.23 | | 5x-10-7x=-14 | | 7(y+9)=91 | | 3x+x+3x+x=24 | | 7x-4=7x+9 | | 25+5v=90 | | b/8+22=23 | | 3(1+6r)=-29 | | 16x-10x-4x=4/1-3/4-1/6 | | 36=a/4 | | x÷2+2=8 | | 17x-34=442 | | 10(s+4)=80 | | -3(7+8d)=17 | | 2.1x-8=7.7 | | L=5000+7a | | 920=5(x+18) |