20-1/5d=3/10d+15

Simple and best practice solution for 20-1/5d=3/10d+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20-1/5d=3/10d+15 equation:



20-1/5d=3/10d+15
We move all terms to the left:
20-1/5d-(3/10d+15)=0
Domain of the equation: 5d!=0
d!=0/5
d!=0
d∈R
Domain of the equation: 10d+15)!=0
d∈R
We get rid of parentheses
-1/5d-3/10d-15+20=0
We calculate fractions
(-10d)/50d^2+(-15d)/50d^2-15+20=0
We add all the numbers together, and all the variables
(-10d)/50d^2+(-15d)/50d^2+5=0
We multiply all the terms by the denominator
(-10d)+(-15d)+5*50d^2=0
Wy multiply elements
250d^2+(-10d)+(-15d)=0
We get rid of parentheses
250d^2-10d-15d=0
We add all the numbers together, and all the variables
250d^2-25d=0
a = 250; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·250·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*250}=\frac{0}{500} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*250}=\frac{50}{500} =1/10 $

See similar equations:

| 550=x-(.2)x | | 500=x-(.2)x | | 4=7x14(4x+17) | | 400=x-(.2)x | | x(-2x+9)=-5 | | 536/x=122+x | | x^2-60=20 | | -6x+8=38, | | x-2(x-3)=-2 | | 1/3(9x-6)=3/5(5x+15) | | p^2-12p-35=0 | | 6-2(2t-7)=-12 | | 2x+20=323x-10 | | 5x+6=-24, | | 450=x-(.2)x | | 35t+45t=150 | | 2(2b-2)+6=-10 | | -3.1x+4.3=-1.9x+3.7 | | 6x-12=64x+3 | | 3(y-3)=4y-9 | | 10x=4x+90 | | (3x)3/4=27 | | r^2-77=4 | | 2=20/(x^2=2) | | (3x)3-4=27 | | 18x=5/9 | | 4/5y-7/2=-8/3 | | 6=-4x=-30 | | {x+4}/3=2 | | 3/5+x/2=1/10 | | -(3x-4)+2(x+3)=-2x+2(x+14) | | 2x+1/8=1/16 |

Equations solver categories