2/z-5=z/0.5z*2-7

Simple and best practice solution for 2/z-5=z/0.5z*2-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/z-5=z/0.5z*2-7 equation:



2/z-5=z/0.5z*2-7
We move all terms to the left:
2/z-5-(z/0.5z*2-7)=0
Domain of the equation: z!=0
z∈R
Domain of the equation: 0.5z*2-7)!=0
z∈R
We get rid of parentheses
2/z-z/0.5z*2+7-5=0
We calculate fractions
(-1z^2)/z^2+z/z^2+7-5=0
We add all the numbers together, and all the variables
(-1z^2)/z^2+z/z^2+2=0
We multiply all the terms by the denominator
(-1z^2)+z+2*z^2=0
We add all the numbers together, and all the variables
2z^2+(-1z^2)+z=0
We get rid of parentheses
2z^2-1z^2+z=0
We add all the numbers together, and all the variables
z^2+z=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 12x+10=43 | | 136=0.8(220-a) | | 4s+36=150 | | 8n-15=2n+57 | | 16x^2-50x-3=0 | | 10x^2=12x-7 | | 0,5t+36=−5 | | 3x+11+151=180 | | 1/2t+36=−5 | | 4u–7=u+3(4+u) | | 12=2x-24+3x | | 3x+11=151 | | 7p=6p−5 | | (e+2)*6=20 | | 7(3x+2)=63 | | -2x-2(3x-5)=6(-3x-2) | | 4x+7=6(x-2)3x | | x-4(x+30=24 | | x+65=56 | | 10(2x+5)=50 | | 4x/4=-10 | | 6x+2+60+70=180 | | 5-2x=-16 | | 5q-6=10 | | (4^x)^3=72 | | 36^(2x-1)=6^(2x) | | 2/5(x+5)=4 | | 3y+14=5y+8 | | Y+5=-2(x-3) | | 8=72x | | x+64+81+42=180 | | x/6/7=12 |

Equations solver categories