2/5y=4+7-9/10y

Simple and best practice solution for 2/5y=4+7-9/10y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5y=4+7-9/10y equation:



2/5y=4+7-9/10y
We move all terms to the left:
2/5y-(4+7-9/10y)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
Domain of the equation: 10y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
2/5y-(-9/10y+11)=0
We get rid of parentheses
2/5y+9/10y-11=0
We calculate fractions
20y/50y^2+45y/50y^2-11=0
We multiply all the terms by the denominator
20y+45y-11*50y^2=0
We add all the numbers together, and all the variables
65y-11*50y^2=0
Wy multiply elements
-550y^2+65y=0
a = -550; b = 65; c = 0;
Δ = b2-4ac
Δ = 652-4·(-550)·0
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4225}=65$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-65}{2*-550}=\frac{-130}{-1100} =13/110 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+65}{2*-550}=\frac{0}{-1100} =0 $

See similar equations:

| 2(w+8)=-5(4w-2)+7w | | 7x=-12+x | | 8.4(6+2x)=0 | | 56.3=12.8+x | | 4x+21=8x-12 | | x+(x+2)+(x+4)+(x+6)=152 | | (x+12)=126 | | 2/11=8/k | | 2(x+35)=4x+90 | | (5x+1)=31 | | 10(b+1)=7(b+4) | | 25=3(2x+2)–5(2x+1) | | -6(2x+4)=-36 | | 3n+8=9n-10 | | 3x+3=4(x-2) | | -3x-18=-6−3x−18=−6 | | 4(x+2)=6x+4-2x | | 3x​−27=−25 | | 9x=2.4 | | |-5x+8|=13 | | 2(1/2x+3)=3x+12-x | | –7=d–82 | | -4x+3x=2 | | 3x-24=2x- | | 5x+1=1/2x+16 | | 5x+1=1/1/2x+16 | | x+3(x-4)=-12+4x | | -2(x-4)=2x+12 | | -42=y+15 | | x^2+(-1x)+(-12)=0 | | 2(c+4)-3=15 | | 24=4(1g-1) |

Equations solver categories