2/5y-4=7-9/10y

Simple and best practice solution for 2/5y-4=7-9/10y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5y-4=7-9/10y equation:



2/5y-4=7-9/10y
We move all terms to the left:
2/5y-4-(7-9/10y)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
Domain of the equation: 10y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
2/5y-(-9/10y+7)-4=0
We get rid of parentheses
2/5y+9/10y-7-4=0
We calculate fractions
20y/50y^2+45y/50y^2-7-4=0
We add all the numbers together, and all the variables
20y/50y^2+45y/50y^2-11=0
We multiply all the terms by the denominator
20y+45y-11*50y^2=0
We add all the numbers together, and all the variables
65y-11*50y^2=0
Wy multiply elements
-550y^2+65y=0
a = -550; b = 65; c = 0;
Δ = b2-4ac
Δ = 652-4·(-550)·0
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4225}=65$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-65}{2*-550}=\frac{-130}{-1100} =13/110 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+65}{2*-550}=\frac{0}{-1100} =0 $

See similar equations:

| 5+x=8+0.75x | | 450=4.9t^2 | | 20x+60=10x | | .5x+25=18.5 | | 2x-16+3x+36=180 | | 9x-4=60 | | 4(x-8=-4x+10 | | Y/7+5/7=y/4-5/7 | | 2(9x-5)=3(6x+12)+4x | | -2x-18+2=-6 | | .5x=25=18.5 | | 3x+5+4x-7=54 | | -2x-18+2=-2 | | 8(8-6k)-k=-k-32 | | 7/(4/11x)=56/3.2 | | 4(y+4)=-23 | | (20/4)*x=55 | | 34-4a=2(a+3)-2a | | -3(x+2)=10-x | | 8-17=-7c+4 | | 20/4*x=55 | | 4x^=1 | | 0.1(18.5+1.5y)+0.7y=-5.8 | | 8x+36=44 | | -2(p+5)=p+5 | | -2x+5x-3=-10x-31 | | 11x+1=-1x+x | | -6(7x-6)=-4-2x | | 7/8*a=42 | | x=500(1.03)x | | 3(2r-14)-3r=14(r-4) | | 1/3q=9-2/5q |

Equations solver categories