2/5x-15=5/8x-18

Simple and best practice solution for 2/5x-15=5/8x-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x-15=5/8x-18 equation:



2/5x-15=5/8x-18
We move all terms to the left:
2/5x-15-(5/8x-18)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 8x-18)!=0
x∈R
We get rid of parentheses
2/5x-5/8x+18-15=0
We calculate fractions
16x/40x^2+(-25x)/40x^2+18-15=0
We add all the numbers together, and all the variables
16x/40x^2+(-25x)/40x^2+3=0
We multiply all the terms by the denominator
16x+(-25x)+3*40x^2=0
Wy multiply elements
120x^2+16x+(-25x)=0
We get rid of parentheses
120x^2+16x-25x=0
We add all the numbers together, and all the variables
120x^2-9x=0
a = 120; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·120·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*120}=\frac{0}{240} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*120}=\frac{18}{240} =3/40 $

See similar equations:

| 6(7x+1)=8(5x-3)-2 | | y=-5*0-2 | | 8(1-3x)=32 | | 7z-11z=32 | | |2u-7|=5 | | -4(-x-2)=20 | | y=-5*1-2 | | 31=3d | | 9−2r=-3r | | 7x-1=-3+2 | | 6x(7=5x) | | 8+3(3w-1)=-3(3w-1)+8w | | 6n=7n+7 | | 38,000-600m=18,800 | | q+10=1 | | 10=90(x^2) | | 3(3y+2)=36 | | 3d=9d+6 | | -2x+(-12)=0,5x-14 | | 0.9=x/0.2+x/0.3-x | | X+9=15x=6 | | 7v-8+3(3v+1)=-2(v+4) | | -1=q/2+3 | | -6(x-14)=-90 | | 3=-2+v/5 | | 7-5(5-8x)=0 | | 5(x+1)=-3(6x-7)+9x | | -3x(2x-2)=18 | | -6=x-10/3 | | 15=v+10 | | 4m—6=14 | | -8+3(-8x-6)=122 |

Equations solver categories