2/5x+90+(3/4x-2)=180

Simple and best practice solution for 2/5x+90+(3/4x-2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+90+(3/4x-2)=180 equation:



2/5x+90+(3/4x-2)=180
We move all terms to the left:
2/5x+90+(3/4x-2)-(180)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x-2)!=0
x∈R
We add all the numbers together, and all the variables
2/5x+(3/4x-2)-90=0
We get rid of parentheses
2/5x+3/4x-2-90=0
We calculate fractions
8x/20x^2+15x/20x^2-2-90=0
We add all the numbers together, and all the variables
8x/20x^2+15x/20x^2-92=0
We multiply all the terms by the denominator
8x+15x-92*20x^2=0
We add all the numbers together, and all the variables
23x-92*20x^2=0
Wy multiply elements
-1840x^2+23x=0
a = -1840; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·(-1840)·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*-1840}=\frac{-46}{-3680} =1/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*-1840}=\frac{0}{-3680} =0 $

See similar equations:

| 2-4(2x-3)=-2 | | -1/2y+4=-9/10y+2/5 | | ​d=|300−48| | | X+7x=9;x=-2,0,4 | | 13.03=2g+3.91 | | -2(-6-5)=-15+7k | | 7-m/9=13 | | 4x+8x0.8=40 | | 22•12y+6=6(2y+1)= | | 3(2x+1)^2=36 | | 16x3-2=0 | | 2/5a-1/5= | | 224=14v | | -126=-6(5-2x) | | 5=3.7-1.2x | | 1x=78 | | 0x=78 | | 6x-9+3x=21 | | 48h=553+265 | | 2v2+19v+42=0 | | X^2-x=-4x+18 | | 5(4+r)=1/2(40+10) | | 5b+3=2b+12 | | 6(4x+2)=-3(8x+4) | | 2x^2=10.5 | | 175m-75m+57000=60600-200m | | -15y4=(D)(3y2) | | 3a-(-a)= | | -15y4=(D)(3y^2) | | 3(x+2)-2x=4(x-3)+6 | | 3(4b-2)=12b-6 | | 320.80=170+.65x |

Equations solver categories