2/5x+10=1/4x+40

Simple and best practice solution for 2/5x+10=1/4x+40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+10=1/4x+40 equation:



2/5x+10=1/4x+40
We move all terms to the left:
2/5x+10-(1/4x+40)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x+40)!=0
x∈R
We get rid of parentheses
2/5x-1/4x-40+10=0
We calculate fractions
8x/20x^2+(-5x)/20x^2-40+10=0
We add all the numbers together, and all the variables
8x/20x^2+(-5x)/20x^2-30=0
We multiply all the terms by the denominator
8x+(-5x)-30*20x^2=0
Wy multiply elements
-600x^2+8x+(-5x)=0
We get rid of parentheses
-600x^2+8x-5x=0
We add all the numbers together, and all the variables
-600x^2+3x=0
a = -600; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-600)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-600}=\frac{-6}{-1200} =1/200 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-600}=\frac{0}{-1200} =0 $

See similar equations:

| 8.15=e+16 | | 15=18x^2+15x-10 | | 0.5x(4-x)=1 | | 7x-3+13x+1+52=360 | | -1/15b=12 | | X(y)=7200 | | 3(x)=100 | | 11+6y=-31 | | 40w+300=20w+500 | | 2(w+-9)=-8 | | 3.9/3=3x/3 | | 2(x-1)=94 | | 4.25(x)=38.25 | | 4x+8=3x+12=6x-2 | | 0.6+x=0.5 | | 2.4+4b+1.6=20 | | 2c+3c-6c+12=14 | | x+(x*0.25)=50000 | | 0.50x+2=13 | | 15x=30x-300 | | 4-3(j-2)=3(-j-1) | | a2-17a+42=0 | | 5(2x-1)+x+17=5x+(6x+2) | | 24=11+e | | 3e+6=26 | | 3e-2e=5+13 | | 2/w=1/4 | | g(-2)=-2 | | 2x^2+15=-57 | | 7+3a+3=-a | | X+35+x+35=180 | | 2x+x+55+35=180 |

Equations solver categories