2/5+3/4x+5/2x=16

Simple and best practice solution for 2/5+3/4x+5/2x=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5+3/4x+5/2x=16 equation:



2/5+3/4x+5/2x=16
We move all terms to the left:
2/5+3/4x+5/2x-(16)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
determiningTheFunctionDomain 3/4x+5/2x-16+2/5=0
We calculate fractions
32x^2/200x^2+150x/200x^2+500x/200x^2-16=0
We multiply all the terms by the denominator
32x^2+150x+500x-16*200x^2=0
We add all the numbers together, and all the variables
32x^2+650x-16*200x^2=0
Wy multiply elements
32x^2-3200x^2+650x=0
We add all the numbers together, and all the variables
-3168x^2+650x=0
a = -3168; b = 650; c = 0;
Δ = b2-4ac
Δ = 6502-4·(-3168)·0
Δ = 422500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{422500}=650$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(650)-650}{2*-3168}=\frac{-1300}{-6336} =325/1584 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(650)+650}{2*-3168}=\frac{0}{-6336} =0 $

See similar equations:

| 5(x-6)=-35+4x | | 5a-14=3a+2 | | 67+3+4x=180 | | 3=7x=4 | | 8x^2(6+48x(6=0 | | -62=-2z-13 | | 30x-2=88 | | f+(–3)=–9 | | 3.7+n/10=-0.5 | | 12x-1=55 | | 2=x+81 | | 208=-8(3h+1) | | a÷-2=8 | | (X+2x)+(X+5)=100 | | 4(x+6)=1/2(6x+4) | | (2+3x)=(62) | | 8(x+5)+2=-4.8+4 | | 5x+2+68=180 | | 1.5-0.25(a+4)=3+3(0.05-0.5a( | | 6m+13=97 | | 7n-(-3)=31 | | 2x-1-1=180 | | 7x+4=2x-10 | | 60+7+4y+3=180 | | 3+2(2x-8)=19 | | 4-2c=-2(c+1) | | 5x+34=14x+-2 | | 8-2(-5x+8)=8(-2x-1) | | B=4/3(j-14) | | 6x+4-9x=1+2x-12 | | 3(x+5)+2(x+5)=-25 | | -6+v=-22 |

Equations solver categories