If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/5(10x+15)=3/10(20x+30)
We move all terms to the left:
2/5(10x+15)-(3/10(20x+30))=0
Domain of the equation: 5(10x+15)!=0
x∈R
Domain of the equation: 10(20x+30))!=0We calculate fractions
x∈R
(20x2/(5(10x+15)*10(20x+30)))+(-15x1/(5(10x+15)*10(20x+30)))=0
We calculate terms in parentheses: +(20x2/(5(10x+15)*10(20x+30))), so:
20x2/(5(10x+15)*10(20x+30))
We multiply all the terms by the denominator
20x2
We add all the numbers together, and all the variables
20x^2
Back to the equation:
+(20x^2)
We calculate terms in parentheses: +(-15x1/(5(10x+15)*10(20x+30))), so:We get rid of parentheses
-15x1/(5(10x+15)*10(20x+30))
We multiply all the terms by the denominator
-15x1
We add all the numbers together, and all the variables
-15x
Back to the equation:
+(-15x)
20x^2-15x=0
a = 20; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·20·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*20}=\frac{0}{40} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*20}=\frac{30}{40} =3/4 $
| -23=-3k-7+9 | | –6s−1=–19−8s | | -9x+(-14)x+15=25+9 | | -3(-9v-4)-2(v+2=) | | –5+9j=10j | | -7(4+7x)=-567 | | x+19=x(x)-11 | | 5x+82x=13 | | 4x+41=6x+70 | | -40=2x | | 12y+5=7(y+1)+13 | | 12x-1=(9x+15)+(53) | | 4(2x+16)=6(2x+4) | | -2.6-4x=3.8 | | 420=-5x | | 8.9-c=-13 | | 56.5=5a | | x+8+x=45 | | 12x-10=4x=6 | | 0=4v+3v | | 2500+0.03x=1500+0.035x | | 2(x+1)=5x+2 | | 4x-4+3x+15=2x+41 | | 16=-4r-4r | | 12/27=g/1350 | | y=23-13 | | -16.3=-4.9+m | | 44.5=d/2 | | -5(-8+7n)+6=-94 | | 5(n-7)-5=-40+5n | | c+-15.12=4.3 | | 13=52/t |