2/3y-4=1/6y+5

Simple and best practice solution for 2/3y-4=1/6y+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3y-4=1/6y+5 equation:



2/3y-4=1/6y+5
We move all terms to the left:
2/3y-4-(1/6y+5)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 6y+5)!=0
y∈R
We get rid of parentheses
2/3y-1/6y-5-4=0
We calculate fractions
12y/18y^2+(-3y)/18y^2-5-4=0
We add all the numbers together, and all the variables
12y/18y^2+(-3y)/18y^2-9=0
We multiply all the terms by the denominator
12y+(-3y)-9*18y^2=0
Wy multiply elements
-162y^2+12y+(-3y)=0
We get rid of parentheses
-162y^2+12y-3y=0
We add all the numbers together, and all the variables
-162y^2+9y=0
a = -162; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-162)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-162}=\frac{-18}{-324} =1/18 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-162}=\frac{0}{-324} =0 $

See similar equations:

| x+9=9(x+9)-9 | | ​7÷​​a​​=9 | | -y-10=y | | 13y+15=-15 | | 2^x+1=1/32 | | x+9=9x-9 | | (41+x)+x=103 | | (4x)+x=85 | | 55=31-4(x-1) | | 6u-2=5u+5 | | 1/6(3/4x-2)=-15/2 | | (5+x)+x=69 | | 9x-1.5=16.5 | | (5x)+x=69 | | -16t^2+230t=0 | | x-x/9=-3 | | 6u−2=5u+5 | | 5x+x=69 | | 6x-10+7x=42 | | x-(1/4x+3/8x)=180 | | 100x(1.1)^x=500 | | 250=35-w | | 3x(x+8)=48 | | 6t+8-4(-8t)=12t-20 | | 6=x/7-1 | | 5x2−6x=0 | | 2x+4/x=9 | | 3x-2(x-1)=7x+23-5x | | 3x-5=180+x+21 | | 4x-3-7x=-27 | | 2(3)^2x-8=2(3)^x+1 | | 15y-3+8y=27y-4-4y |

Equations solver categories