2/3y-1/(-3+3y)=2

Simple and best practice solution for 2/3y-1/(-3+3y)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3y-1/(-3+3y)=2 equation:



2/3y-1/(-3+3y)=2
We move all terms to the left:
2/3y-1/(-3+3y)-(2)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: (-3+3y)!=0
We move all terms containing y to the left, all other terms to the right
3y!=3
y!=3/3
y!=1
y∈R
We add all the numbers together, and all the variables
2/3y-1/(3y-3)-2=0
We calculate fractions
(6y-6)/(9y^2-9y)+(-3y)/(9y^2-9y)-2=0
We multiply all the terms by the denominator
(6y-6)+(-3y)-2*(9y^2-9y)=0
We multiply parentheses
-18y^2+(6y-6)+(-3y)+18y=0
We get rid of parentheses
-18y^2+6y-3y+18y-6=0
We add all the numbers together, and all the variables
-18y^2+21y-6=0
a = -18; b = 21; c = -6;
Δ = b2-4ac
Δ = 212-4·(-18)·(-6)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3}{2*-18}=\frac{-24}{-36} =2/3 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3}{2*-18}=\frac{-18}{-36} =1/2 $

See similar equations:

| 18x-4x=6x | | (3-4m)^2=0 | | 10-2n=19 | | (6x+6)=(10x-30) | | x+18/3=24 | | 3h²-147=0 | | 5x+x+6=180 | | (15x+8)=(7x-4) | | 77=5-8x | | 2/3y-(1/(3+3y)=2 | | F(x)=x+14/x-7 | | H=-16t^2+210t-3 | | 2w+6/w-8=0 | | 7=a-9.2 | | -r-20=-5r-72= | | 2/3y-1/(3+3y)=2 | | Y=0.1-0.005x | | 7*(x-1)=2*(3x+1) | | 3y+78=180 | | 10x^2+40x-77=0 | | (x-4)^2-81=0 | | 2x2-28x+96=0 | | 3(5b+2-b=4(b+9) | | X^2-2x-86=0 | | x+4*(x-1)=23-2*(x+3) | | (7-2x)=-1 | | 3(x-5=6 | | 21-7z=42 | | x^2=9|16 | | 6x-14=3×+1 | | 3*(x+2)+5=x+12 | | 0=1/2x+6 |

Equations solver categories