2/3x-5+2(x-3)=12x+7

Simple and best practice solution for 2/3x-5+2(x-3)=12x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-5+2(x-3)=12x+7 equation:



2/3x-5+2(x-3)=12x+7
We move all terms to the left:
2/3x-5+2(x-3)-(12x+7)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We multiply parentheses
2/3x+2x-(12x+7)-6-5=0
We get rid of parentheses
2/3x+2x-12x-7-6-5=0
We multiply all the terms by the denominator
2x*3x-12x*3x-7*3x-6*3x-5*3x+2=0
Wy multiply elements
6x^2-36x^2-21x-18x-15x+2=0
We add all the numbers together, and all the variables
-30x^2-54x+2=0
a = -30; b = -54; c = +2;
Δ = b2-4ac
Δ = -542-4·(-30)·2
Δ = 3156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3156}=\sqrt{4*789}=\sqrt{4}*\sqrt{789}=2\sqrt{789}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{789}}{2*-30}=\frac{54-2\sqrt{789}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{789}}{2*-30}=\frac{54+2\sqrt{789}}{-60} $

See similar equations:

| 2(5x-1)+3=-11 | | 19x+9(x+2)-6=180 | | −5(−5−2x)+5=−10 | | 4h−15=1 | | 30+20x=45x | | 2=1+6x | | 5x+19=4x+26 | | 1=1+6x | | 3u2+15u=0 | | 1/3n=22 | | 2(3x-4)=4(.5x-8) | | 5a=579-7a | | (4/2x-5)=(6/5x-8) | | 5x+33=58 | | 60+0x=60 | | 61-3x=31 | | t=-16t^2+1400 | | 5l+9=34 | | 103+-6x=49 | | (X^3+4x^2-25x-100)=0 | | 5^x-3-4=21 | | 84-1x=80 | | x=18.75+0.25x | | 43+2x=57 | | 4-x+x-3-9+4x=6 | | 85+-1x=79 | | 29+5x=39 | | 111-10x=61 | | (x-3)/(x+4)=0 | | ×+y=2 | | (8+x)(4x+9)=0 | | -3x+70=55 |

Equations solver categories