If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+15u=0
a = 3; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·3·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*3}=\frac{-30}{6} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*3}=\frac{0}{6} =0 $
| 1/3n=22 | | 2(3x-4)=4(.5x-8) | | 5a=579-7a | | (4/2x-5)=(6/5x-8) | | 5x+33=58 | | 60+0x=60 | | 61-3x=31 | | t=-16t^2+1400 | | 5l+9=34 | | 103+-6x=49 | | (X^3+4x^2-25x-100)=0 | | 5^x-3-4=21 | | 84-1x=80 | | x=18.75+0.25x | | 43+2x=57 | | 4-x+x-3-9+4x=6 | | 85+-1x=79 | | 29+5x=39 | | 111-10x=61 | | (x-3)/(x+4)=0 | | ×+y=2 | | (8+x)(4x+9)=0 | | -3x+70=55 | | 18x+31=19x-36 | | 26+0x=26 | | 4x-28=84 | | 3/4z=1/4z−3+5 | | 5x+24=3x+38 | | 3x-12=9-4× | | 6×+5y=43 | | 2(x+2)-7=13 | | (3x+2)(x^2-5x-36)=0 |