If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x-1/8=2-5/6x
We move all terms to the left:
2/3x-1/8-(2-5/6x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
2/3x-(-5/6x+2)-1/8=0
We get rid of parentheses
2/3x+5/6x-2-1/8=0
We calculate fractions
(-108x^2)/1152x^2+768x/1152x^2+960x/1152x^2-2=0
We multiply all the terms by the denominator
(-108x^2)+768x+960x-2*1152x^2=0
We add all the numbers together, and all the variables
(-108x^2)+1728x-2*1152x^2=0
Wy multiply elements
(-108x^2)-2304x^2+1728x=0
We get rid of parentheses
-108x^2-2304x^2+1728x=0
We add all the numbers together, and all the variables
-2412x^2+1728x=0
a = -2412; b = 1728; c = 0;
Δ = b2-4ac
Δ = 17282-4·(-2412)·0
Δ = 2985984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2985984}=1728$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1728)-1728}{2*-2412}=\frac{-3456}{-4824} =48/67 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1728)+1728}{2*-2412}=\frac{0}{-4824} =0 $
| 35(63+x)=(63)(65) | | 15n+9=12n+19 | | (-2/3)x=6 | | 2-3(2x+1)=1/3(6x-9) | | 3z+11=10 | | y+56=2 | | 6y–1+2y=7y | | n3-n=120 | | 2/11p+7=1/5p | | -12=-8(n-3) | | 24=-3e | | 4-2s=-2 | | 3+5(x-4)=-3 | | 2q+5=12 | | 45+y=4y | | 3x+1=-2x-5 | | x/3=1.1 | | x+9=4x-21 | | 12k+4=5k+160 | | x-0.3=2.1 | | 12x+4+5x+160=180 | | x+1.2=1.1 | | 2x-1/2=2/7 | | 5x-3=5(1.14)-3 | | 1/5x-5=1/4x | | 2x-4=-4+8 | | 15y–2+3y=7 | | 17/3=y/10 | | x*21=12 | | P=43-0.17-3=p | | 7y-21=7(-3) | | x^2-2x-363=0 |