2/3x+3=4/5x+9

Simple and best practice solution for 2/3x+3=4/5x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+3=4/5x+9 equation:



2/3x+3=4/5x+9
We move all terms to the left:
2/3x+3-(4/5x+9)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+9)!=0
x∈R
We get rid of parentheses
2/3x-4/5x-9+3=0
We calculate fractions
10x/15x^2+(-12x)/15x^2-9+3=0
We add all the numbers together, and all the variables
10x/15x^2+(-12x)/15x^2-6=0
We multiply all the terms by the denominator
10x+(-12x)-6*15x^2=0
Wy multiply elements
-90x^2+10x+(-12x)=0
We get rid of parentheses
-90x^2+10x-12x=0
We add all the numbers together, and all the variables
-90x^2-2x=0
a = -90; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-90)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-90}=\frac{0}{-180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-90}=\frac{4}{-180} =-1/45 $

See similar equations:

| 5x-28+3x+4=90 | | -8t-5t+7t=72 | | 8-2e-2+4e=20 | | 29+7x=6x+21 | | x3−4x2−3x=0 | | 50d+30=250d+10 | | 7j-8=5j-3+2j-2 | | p^{2}+0.6p=0.91 | | 6x^2−43.5=250.5 | | 3+6=k | | 7j-8=5j-3+2j-12 | | 18–4d=34 | | (5x-28)(3x+4)=90 | | 2(n-4)=2n-12 | | x+46+x+121=165 | | j/5=10 | | -24=3r- | | 50d+30=250d=10 | | 8a+6=1+7a=6a | | 7j-8=5j-3+2j-20 | | 2x-x-3=-2x+5 | | 4x+11=9x−14 | | 69+49+(8x+14)=180 | | 2x+46+121=164 | | -72+6c=12 | | 7j-8=5j-3+2j-0 | | d/2+5=10 | | -2.3=10.2+w/5 | | g(100)=2.25(100) | | 3x-5+3x-5+5x-13=180 | | -8x=-4x+16 | | C=39.36+0.50x |

Equations solver categories