2/3x+10=5/9x-5

Simple and best practice solution for 2/3x+10=5/9x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+10=5/9x-5 equation:



2/3x+10=5/9x-5
We move all terms to the left:
2/3x+10-(5/9x-5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x-5)!=0
x∈R
We get rid of parentheses
2/3x-5/9x+5+10=0
We calculate fractions
18x/27x^2+(-15x)/27x^2+5+10=0
We add all the numbers together, and all the variables
18x/27x^2+(-15x)/27x^2+15=0
We multiply all the terms by the denominator
18x+(-15x)+15*27x^2=0
Wy multiply elements
405x^2+18x+(-15x)=0
We get rid of parentheses
405x^2+18x-15x=0
We add all the numbers together, and all the variables
405x^2+3x=0
a = 405; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·405·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*405}=\frac{-6}{810} =-1/135 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*405}=\frac{0}{810} =0 $

See similar equations:

| 411/3+388=n–79 | | 1-b=-3 | | −3w^2−10w+1=-4w^2 | | 17=5k.2 | | 99°+X=4x | | 65+c–23=40+65–23 | | 27+9x)=(8x+30) | | -5(4b–2)=-2(3+6b) | | 2/3x+10=5/9(x-9) | | −3w2−10w+1=-4w^2 | | 73=q+23q= | | 11x+32=15x | | 4/v=9/8 | | 12(4x+14)=2(x−7) | | x³-29=700 | | a3+6=10 | | x-12=x5 | | 11=3m+1 | | 1/3x+4/1=17/3 | | -2x-7=-4x-9 | | (x*0.15)+(x*0.08)=11 | | n=190 | | 7j-2=19 | | 2x-13.5=0.5(x+3 | | -23x=155 | | 4x-15=1;×= | | -23x=-155 | | 3(c+17)=3 | | t/2-3=8 | | 3(4u+10)=-30+10u | | −13=k+5 | | 15=3(n-9) |

Equations solver categories