2/3x+1/8=3/4x+12

Simple and best practice solution for 2/3x+1/8=3/4x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+1/8=3/4x+12 equation:



2/3x+1/8=3/4x+12
We move all terms to the left:
2/3x+1/8-(3/4x+12)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x+12)!=0
x∈R
We get rid of parentheses
2/3x-3/4x-12+1/8=0
We calculate fractions
48x^2/768x^2+512x/768x^2+(-576x)/768x^2-12=0
We multiply all the terms by the denominator
48x^2+512x+(-576x)-12*768x^2=0
Wy multiply elements
48x^2-9216x^2+512x+(-576x)=0
We get rid of parentheses
48x^2-9216x^2+512x-576x=0
We add all the numbers together, and all the variables
-9168x^2-64x=0
a = -9168; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·(-9168)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4096}=64$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*-9168}=\frac{0}{-18336} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*-9168}=\frac{128}{-18336} =-4/573 $

See similar equations:

| -8-4x=-5(-8+4x) | | 3x+4=-10x+7 | | 3x+4=10x+7 | | 7x+4=3x-15 | | 3x+13=103 | | 2x(x+4)=11-3x | | 3x-5=x-10 | | 315=7(3-7n) | | 1-1/6x=27+2x | | 4(8-8)p=6-6p | | x=(3125*6) | | 5000+4y=17500 | | 2w-5=2w+w-7 | | 400=347.7t+-96.65t+3.45t+0.5t | | 3x+500=30000 | | 6(x+1)-(4x+6)=-4 | | -3+9(4m-1)=8m-2(6-2m) | | (33+2x)(17+2x)-561=216 | | 9x-5x-2=10 | | 8+2x-(6x-3)=4(3-x)-1 | | 6z-11z=45 | | 4(x+3)(x-3)=5x | | w/5+4=5 | | (3/13x)=21 | | -6(2m-2)=-12m+12 | | 5.1=-0.005x2+0.41x-5.1 | | (1/6x)=-7 | | (1/6)x=-7 | | x-x-1/2x-1/2x=360 | | (1/3)x^2+3x=0 | | 40-x-3x=180 | | 15/20=6/x |

Equations solver categories