2/3k+5/7=-1+1/8k

Simple and best practice solution for 2/3k+5/7=-1+1/8k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3k+5/7=-1+1/8k equation:



2/3k+5/7=-1+1/8k
We move all terms to the left:
2/3k+5/7-(-1+1/8k)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 8k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
2/3k-(1/8k-1)+5/7=0
We get rid of parentheses
2/3k-1/8k+1+5/7=0
We calculate fractions
960k^2/1176k^2+784k/1176k^2+(-147k)/1176k^2+1=0
We multiply all the terms by the denominator
960k^2+784k+(-147k)+1*1176k^2=0
Wy multiply elements
960k^2+1176k^2+784k+(-147k)=0
We get rid of parentheses
960k^2+1176k^2+784k-147k=0
We add all the numbers together, and all the variables
2136k^2+637k=0
a = 2136; b = 637; c = 0;
Δ = b2-4ac
Δ = 6372-4·2136·0
Δ = 405769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{405769}=637$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(637)-637}{2*2136}=\frac{-1274}{4272} =-637/2136 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(637)+637}{2*2136}=\frac{0}{4272} =0 $

See similar equations:

| (2x+7)+(9x-33)=121 | | 4x+9x=5x+4 | | 5y+1-2y=4+1 | | 20g+4g-23g=4 | | z+5/10=10 | | 7z-4z=9 | | d=-6 | | 156=13s | | 15g+4g-6g-9g-g=15 | | 10y+4=5y-3 | | x(x-7)-10=0 | | 9x+1=8×+7 | | 38=7y+4(y+4) | | 5x+3=10x+9 | | 17g+g+4g-17g=5 | | 4t-5=7t-12 | | 5+6y=67 | | m^-6m+9=0 | | 8y=7=23-2y | | 7+26x=28+19x | | -11+n=-28 | | 2-1/5d=3/10d+16 | | 2w=w+59 | | 12y^2+24y=0 | | x(2x+3)=324 | | 4x-9=3x-3 | | 3/8=n/6=n/18 | | 104.4=9(m+2.9) | | 3(-2x-4)=12 | | 7z=z+42 | | 2m*4=21 | | -11=x-19 |

Equations solver categories