2/3f-3/7-1/7f=3

Simple and best practice solution for 2/3f-3/7-1/7f=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3f-3/7-1/7f=3 equation:



2/3f-3/7-1/7f=3
We move all terms to the left:
2/3f-3/7-1/7f-(3)=0
Domain of the equation: 3f!=0
f!=0/3
f!=0
f∈R
Domain of the equation: 7f!=0
f!=0/7
f!=0
f∈R
determiningTheFunctionDomain 2/3f-1/7f-3-3/7=0
We calculate fractions
686f/1029f^2+(-3f)/1029f^2+(-9f)/1029f^2-3=0
We multiply all the terms by the denominator
686f+(-3f)+(-9f)-3*1029f^2=0
Wy multiply elements
-3087f^2+686f+(-3f)+(-9f)=0
We get rid of parentheses
-3087f^2+686f-3f-9f=0
We add all the numbers together, and all the variables
-3087f^2+674f=0
a = -3087; b = 674; c = 0;
Δ = b2-4ac
Δ = 6742-4·(-3087)·0
Δ = 454276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{454276}=674$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(674)-674}{2*-3087}=\frac{-1348}{-6174} =674/3087 $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(674)+674}{2*-3087}=\frac{0}{-6174} =0 $

See similar equations:

| 4(x-6=12 | | 1/6=7/t | | 24z+3=2/4z+5 | | x/x-6+7=6/x-6 | | x=7=4 | | 2x+4=-x+15 | | 125^x+1=5^x+7 | | -16x^2+80x=60 | | 2x-1/4x+1=0 | | V+7+3v=7 | | -1=2b-1+2 | | x(2x-4)=(2x+6)(x-2) | | 70=(b)(200) | | 3p-4-8p=-24 | | X^3-2x^2-x+80=0 | | 27-4x=3x-8 | | 1/3x+1/6x=27 | | 5x-3=3x+1) | | x2+1=5x | | 3/4{1/4x+8}-{1/2x+2}=3/8(4-x)-1/4 | | 1/3x-13=4 | | 3r-5+3=-8 | | -3+8(7x-4)=9-7(8x+3) | | 50-x=4x+10 | | t+15+6t-9=41 | | 4/5x-11=53 | | 4x+15=1+1x | | 12b-18=3b-12 | | 12p+4;=1.5 | | 5x+5=x+40 | | 8+3x=×+11+2x | | 2b-3(6)=b-4(3) |

Equations solver categories