If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/31)+7(p-12)=-2(2p-
We move all terms to the left:
2/31)+7(p-12)-(-2(2p-)=0
Domain of the equation: 31)+7(p!=0We add all the numbers together, and all the variables
p∈R
2/31)+7(p-2(+2p)-12)-(=0
We add all the numbers together, and all the variables
2/31)+7(p-2(+2p)=0
We multiply parentheses
2/31)+7(p-4p=0
We multiply all the terms by the denominator
-4p*31)+7(p+2=0
Wy multiply elements
-124p^2+2=0
a = -124; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-124)·2
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{62}}{2*-124}=\frac{0-4\sqrt{62}}{-248} =-\frac{4\sqrt{62}}{-248} =-\frac{\sqrt{62}}{-62} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{62}}{2*-124}=\frac{0+4\sqrt{62}}{-248} =\frac{4\sqrt{62}}{-248} =\frac{\sqrt{62}}{-62} $
| -2=2(x-4)=4 | | 9x+(8-8)=55-10 | | x-(-5/7)=1/1 | | 17v=45=8v | | -5(1-3x)=4(3-x+2) | | 2/3p-8=-4p+2+7 | | 24+103x+1=79+1 | | (x-71)+(x-61)+296=360 | | t+187=7 | | 46=10n+2 | | 1/2(6x+7)=-5-3x | | 179=228-w | | 0.20(14,000)+0.14x=0.04(50+x) | | −7a=9−8a | | -4x^2-64x-240=0 | | 5x+9x-12=2 | | -w+273=95 | | 3b–11=-17 | | 25+8w=13w | | 6g+1=2g+28 | | 3(w-7)-7=-2(-4w+9)-w | | m^2-10m+36=0 | | 3x+1=4x–8 | | 645=3n^2-2n | | y+4=82/3 | | -3(2x-3/4)=6 | | 8x=3(x=7) | | -3v+35=4(v+7) | | 1/5x=2x-3 | | -4.4=8.4+v/8 | | -3=2x-3/4=6 | | 3/4x-2/3x+1/2=21/2+1/2x+3(x-1) |