2/3)9+x)=-5(4-x)

Simple and best practice solution for 2/3)9+x)=-5(4-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3)9+x)=-5(4-x) equation:



2/3)9+x)=-5(4-x)
We move all terms to the left:
2/3)9+x)-(-5(4-x))=0
Domain of the equation: 3)9+x)-(-5(4!=0
x∈R
We add all the numbers together, and all the variables
2/3)9+x)-(-5(-1x+4))=0
We add all the numbers together, and all the variables
-1x+2/3)9+x)-(-5(=0
We multiply all the terms by the denominator
-1x*3)9+x)-(-5(+2=0
Wy multiply elements
-3x^2+2=0
a = -3; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-3)·2
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-3}=\frac{0-2\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-6} =-\frac{\sqrt{6}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-3}=\frac{0+2\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-6} =\frac{\sqrt{6}}{-3} $

See similar equations:

| -10-9p=-6p+8 | | 9.36x-2.021=8.89x | | N^3+18n-9=0 | | 3b+2=5b-12 | | 14x-13x-23=12 | | 56=w/4 | | -129+8x+5x=105 | | y=11(13)+12 | | 6-(3+2x)=3x+(2x-4) | | 2/3n+6=-9 | | 10r-8=9r | | -16t^2+78=0 | | -8v+7=-9v | | 32=(n-7) | | -16t^2+71=0 | | 4c=7+5c | | -2s=-3s-9 | | X+2x+25+2x+30=180 | | 3/8x-2=10 | | (x+1)+x=545 | | (4+9+16÷4)-8-3×5=x | | 16=3(u+9)+16 | | -2(w-2)=-6 | | x+36/7=3 | | -3(z+7)=0 | | 1.5-0.03x=-0.57 | | 2c+8c=-20 | | -3+p/9=-5 | | 2-c=-9 | | x/2=1/6+7x/18 | | 7x-29=60 | | 5u+6=42 |

Equations solver categories