If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3(2k-5)=1/2(2k-5)
We move all terms to the left:
2/3(2k-5)-(1/2(2k-5))=0
Domain of the equation: 3(2k-5)!=0
k∈R
Domain of the equation: 2(2k-5))!=0We calculate fractions
k∈R
(4k2/(3(2k-5)*2(2k-5)))+(-3k2/(3(2k-5)*2(2k-5)))=0
We calculate terms in parentheses: +(4k2/(3(2k-5)*2(2k-5))), so:
4k2/(3(2k-5)*2(2k-5))
We multiply all the terms by the denominator
4k2
We add all the numbers together, and all the variables
4k^2
Back to the equation:
+(4k^2)
We calculate terms in parentheses: +(-3k2/(3(2k-5)*2(2k-5))), so:We add all the numbers together, and all the variables
-3k2/(3(2k-5)*2(2k-5))
We multiply all the terms by the denominator
-3k2
We add all the numbers together, and all the variables
-3k^2
Back to the equation:
+(-3k^2)
4k^2+(-3k^2)=0
We get rid of parentheses
4k^2-3k^2=0
We add all the numbers together, and all the variables
k^2=0
a = 1; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·1·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$k=\frac{-b}{2a}=\frac{0}{2}=0$
| -4.9x^2+15x+20=0 | | -4.9x+15x+20=0 | | 12-x=4x+2 | | 7z+12=10-5 | | 2(h+8)=h-12 | | 3(g+2)=g-5 | | 9^x+1+3^2x+1=729 | | 5(p+13)=2p-4 | | 2/3x+11=1/4x-9 | | -10q=30 | | z-76=-65 | | -7w=-56 | | (9^x+1)+(3^2x+1)=729 | | q+1=12 | | s/2=-1 | | 9x2+2x-6=0 | | 2/5c-5=-10-1/5c | | y+-15=19 | | 25x2+22x-6=0 | | 3x2=9 | | k/3-12=-8 | | k/4+7=10 | | 5/8b-4=16 | | 5(x+2)/3=7x-1 | | 5(x-4)-(x-12)=8 | | 3x/X^2-4=0 | | 1/3a-5=-1 | | x+(x*25/100)=500 | | 5x+20+4x+25=180 | | 8(6x-4)=40 | | 2x+5+3x-5=90 | | z/2+8=12 |