2/2x-5=3/x+1

Simple and best practice solution for 2/2x-5=3/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/2x-5=3/x+1 equation:



2/2x-5=3/x+1
We move all terms to the left:
2/2x-5-(3/x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We get rid of parentheses
2/2x-3/x-1-5=0
We calculate fractions
2x/2x^2+(-6x)/2x^2-1-5=0
We add all the numbers together, and all the variables
2x/2x^2+(-6x)/2x^2-6=0
We multiply all the terms by the denominator
2x+(-6x)-6*2x^2=0
Wy multiply elements
-12x^2+2x+(-6x)=0
We get rid of parentheses
-12x^2+2x-6x=0
We add all the numbers together, and all the variables
-12x^2-4x=0
a = -12; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-12)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-12}=\frac{0}{-24} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-12}=\frac{8}{-24} =-1/3 $

See similar equations:

| 6+6x-4x=5x-9 | | A=9/2(h-61) | | -5/3v-1/4=5/4v-5 | | 9-3=21+y | | 2g+3.50=5g+3.25 | | -4(3y-2)-y=-4(y-3) | | -0.10(40)+0.30x=0.05(x-10) | | 2x-1÷3=x-2÷3+1 | | 7(1+6n)+2(1-n)=49 | | 10+6g=−26 | | m-(5-m)=3 | | 2k2−14=−3k | | 73=5r–7 | | 8x-3-5x=51 | | 8(8v=1)=8-7v | | 9x+3=2(3x+1) | | 10y-5y=14+3y | | -3w+1/2=-7/3w-2/3 | | 3x/7=20/7-x | | 1+v/3=-1 | | w/3+1/6=5/12 | | -8+-3p=-14 | | 7.9v+11.52=4.3v | | 9y-11=-7-9y | | w-16=1.6 | | v+2/6=4 | | -24=2(3x+6) | | -28-6s=-9(7s+3) | | -4(1+n)=16 | | 2y+50+5y-17=90 | | 1/2u-7/3=-2u-2/3 | | 9y-11=-7-y |

Equations solver categories