If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.6666666666666666666y=921600/y
We move all terms to the left:
2.6666666666666666666y-(921600/y)=0
Domain of the equation: y)!=0We add all the numbers together, and all the variables
y!=0/1
y!=0
y∈R
2.6666666666666666666y-(+921600/y)=0
We get rid of parentheses
2.6666666666666666666y-921600/y=0
We multiply all the terms by the denominator
(2.6666666666666666666y)*y-921600=0
We add all the numbers together, and all the variables
(+2.6666666666666666666y)*y-921600=0
We multiply parentheses
2y^2-921600=0
a = 2; b = 0; c = -921600;
Δ = b2-4ac
Δ = 02-4·2·(-921600)
Δ = 7372800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7372800}=\sqrt{3686400*2}=\sqrt{3686400}*\sqrt{2}=1920\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1920\sqrt{2}}{2*2}=\frac{0-1920\sqrt{2}}{4} =-\frac{1920\sqrt{2}}{4} =-480\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1920\sqrt{2}}{2*2}=\frac{0+1920\sqrt{2}}{4} =\frac{1920\sqrt{2}}{4} =480\sqrt{2} $
| 3z^2-11z+10=0 | | 7(1.25t)=43.25 | | 4(t+1/4)=3 | | -5+6x=12x-11 | | 24=-2(4a+3) | | 17w+20=18w | | 28=x7x-5 | | X^3-3x^2=28 | | 6(2.5+x)=63 | | 3.8+6x=8.6x=0.9 | | 3x-5(x-5)=-2+4x+3 | | -15=-3x+15x=5 | | 4x-(8)=0 | | 24/x=4/9 | | x+x/4=180 | | 6(8n+7)=-8-2n | | (3x/5)-(4/5)(x+1)=2-(3/10)(3x-4) | | -4(1+1x)=-32 | | 6/11=3y | | 12(y+5=13y+2 | | 3x+15-9=2(x+2 | | 495=4b+3.5b | | 6/11=3y | | 2w-5=338 | | 1.5-0.02x=-1.26 | | -4(2-m)=-12 | | 8x-(6)=50 | | 3x/5-4/10(x+1)=2-3/10(3x-4) | | 17+4y=1+6y | | 6(y-1)=9(y-4) | | a-13=12(-12a+11) | | -4(2+6x)=-176 |