If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-5(t-3)+t=7t(6t+8)
We move all terms to the left:
2-5(t-3)+t-(7t(6t+8))=0
We add all the numbers together, and all the variables
t-5(t-3)-(7t(6t+8))+2=0
We multiply parentheses
t-5t-(7t(6t+8))+15+2=0
We calculate terms in parentheses: -(7t(6t+8)), so:We add all the numbers together, and all the variables
7t(6t+8)
We multiply parentheses
42t^2+56t
Back to the equation:
-(42t^2+56t)
-4t-(42t^2+56t)+17=0
We get rid of parentheses
-42t^2-4t-56t+17=0
We add all the numbers together, and all the variables
-42t^2-60t+17=0
a = -42; b = -60; c = +17;
Δ = b2-4ac
Δ = -602-4·(-42)·17
Δ = 6456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6456}=\sqrt{4*1614}=\sqrt{4}*\sqrt{1614}=2\sqrt{1614}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{1614}}{2*-42}=\frac{60-2\sqrt{1614}}{-84} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{1614}}{2*-42}=\frac{60+2\sqrt{1614}}{-84} $
| 2x+4=6x= | | 8x+5-3x=5x+7 | | 7(-5+3x)=245 | | 9x+5(2x+11)+2=3(x+21)+2(8x-4) | | -13/(3.7+r)2+5.1/r2=0 | | (47)=x/18 | | 0.05n=0.10(n+7)=3.55 | | -49=7n= | | 6x+7=2x-17 | | (3x-8)+3x=10 | | 5x+4+4x+5=180 | | 9n=128 | | 90-(2x+71)=9 | | 4-v=7+2(1-v) | | 1/2x#8=10 | | 3+4+2+6+8+m=30 | | x+3.3=2.34x | | 6p-15=8p-11 | | 90-(2x71)=9 | | (8x+22)+118=180 | | 1/3+1/4k=67/12 | | 3x+15x=-15 | | 968-329-328=m | | 2(w-1)-4=-2(-8w+5)-2w | | 31/8-m=11/10 | | .5(x+12)=12 | | X+7/6+1/2=x-2/6 | | 3(2+2.5x)=31.5 | | (3x-5)-4x=-10 | | 5y+6-3(-5y-2)=2(y-2) | | 4.1(x)=28.2 | | 5+2x=10x |